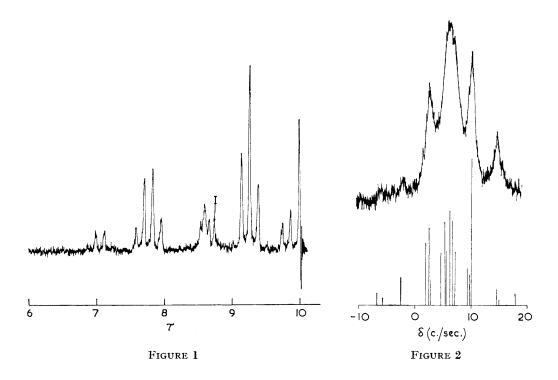
1236. The Relative Signs of the Spin-Spin Coupling Constants J(195Pt-CH₃) and J(195Pt-CH₂) in Triethylplatinum Chloride Tetramer


By S. F. A. KETTLE

THE proton magnetic resonance (p.m.r.) spectra of diethyl mercury,¹ triethyl phosphorus, tetraethyl tin, and tetraethyl lead ² show that the sign of the spin-spin coupling constants J_{XA} and J_{XB} are opposite (X is an isotope of the central atom with spin $\frac{1}{2}$ and A and B are methyl and methylene protons, respectively). In all of these cases the spectra were complex and a detailed analysis was necessary. We now report that the p.m.r. spectrum of triethylplatinum chloride,³ recorded in a solution in carbon tetrachloride on a Varian A60 spectrometer, similarly shows that $J(^{195}Pt-A)$ and $J(^{195}Pt-B)$ have opposite signs. In contrast to the other spectra, that of $(PtEt_aCl)_a$ is simple, interactions being confined to one region of the spectrum. The spectrum is shown in Figure 1 and shows methylene group resonances centred at $\tau = 7.77$ and methyl group resonances centred at $\tau = 9.25$. The hyperfine splitting of these peaks gives $J(CH_2-CH_3) = 7.5$ c./sec. The platinum isotope ¹⁹⁵Pt (spin $\frac{1}{2}$, natural abundance $35\cdot3\%$) would be expected to split the methylene and methyl resonances symmetrically. This pattern is found but in the central region, where the $^{195}\mathrm{Pt}$ isotope-shifted CH_2 and CH_3 group resonances are expected to be superimposed, an A_3B_2 spectrum is observed. From the complete spectrum it is found that $J(^{195}Pt-CH_3) = 72.0 \text{ c./sec. and } J(^{195}Pt-CH_2) = 86.0 \text{ c./sec.}$ It follows that δ for the A_3B_2 system is 10 c./sec. and $J(CH_2 CH_3)/\delta = 0.75$. Figure 2 shows the spectrum of the A₃B₂ region, recorded at a slower scanning rate, compared with the predicted peak positions and intensities taken from Corio's Tables.⁴ There is excellent agreement. The peak labelled I in Figure 1 is assigned to an impurity, and is seen to be much reduced in intensity in Figure 2,⁵ which is the spectrum of a solution made from a large, washed, single crystal of the compound.

- ¹ P. T. Narasimhan and M. T. Rogers, *J. Chem. Phys.*, 1959, **31**, 1430. ² P. T. Narasimhan and M. T. Rogers, *J. Chem. Phys.*, 1961, **34**, 1049.

- ³ S. F. A. Kettle, J., 1965, 5737.
 ⁴ P. L. Corio, Chem. Rev., 1960, 60, 363.
- ⁵ The compounds (CH₃PtI)₄ and (CH₃PtCl)₄ also usually show impurity bands. I am indebted to Dr. J. A. S. Smith for a discussion on this point.

From these observations it follows that (a) the ¹⁹⁵Pt nuclear spin orientation must be identical for the interacting methylene and methyl resonances; otherwise a superimposition spectrum would have been obtained; (b) $J(^{195}Pt-CH_2)$ and $J(^{195}Pt-CH_3)$ must have opposite sign, for again the spectrum would have been a superimposition. These is no

need in this case to apply the criteria of Narasimhan and Rogers,¹ although there are also satisfied: *viz.* $|\delta'|, |\delta''| = 69,89 \ge J_{AB} = 7.5$ c./sec. By exploiting the variation of chemical shifts with solvent and with field strength it may be possible to simplify the spectra of other A_3B_2X compounds; several cases appear favourable ⁶ in addition to those studied by Narasimhan and Rogers.^{1,2}

A grant from the Chemical Society Research Fund is gratefully acknowledged.

DEPARTMENT OF CHEMISTRY, THE UNIVERSITY, SHEFFIELD 10. [Received, February 18th, 1965.]

⁶ G. J. Bene, E. Duval, A. Finaz, G. Hochstrasser, and S. Koide, *Physics Letters*, 1963, 7, 34.